Python API Reference Manual¶
- The Python API consists of the following modules:
Constraint - Used to manage constraints
DataFrame - Used for the creation and processing of sets and parameter data
MAPL - Used to initiate and manage MAPL instances
Objective - Used to manage objective functions
Tuple - Used to represent indexes
Variable - Used to manage decision variables
Each interface comes with corresponding documentation and examples, which can also be viewed using the help
function.
Before running the examples under the interface documentation, execute the following statements to complete the necessary model initialization.
>>> import maplpy as mp
>>> m = mp.MAPL()
>>> m.read("steel4.mpl")
- class maplpy.Constraint¶
Bases:
pybind11_object
Constraint - The constraint class is used to bind a constraint entity in the optimization model. Use
MAPL.getConstraint
to get and bind the constraint entity. A constraint entity may be a single constraint or a multi-dimensional constraint; it is a collection of constraints with the same name but different indexes. This entity class allows you to get constraint properties such as name, bounds, and expression value.>>> cons = m.getConstraint("Time") >>> x.lb = 10 >>> x.ub = 20 >>> x.name = "x" >>> x.value
- __getitem__(self: maplpy.Constraint, position: int) maplpy.Constraint ¶
When the constraint entity is a collection of constraints, returns the specific constraint at the specified position. If this built-in function exists, it means you can use the
[]
method to get the value by position index.- Parameters
position (int) – Position index value.
- Returns
Specific constraint at the specified position in the constraint collection.
- Return type
>>> cons = m.getConstraint("Time") >>> con = cons[1]
- __init__(*args, **kwargs)¶
- __iter__(self: maplpy.Constraint) Iterator ¶
When the constraint entity is a collection of constraints, iterates over the constraint collection. If this built-in function exists, it means you can use the for in method to iterate.
>>> cons = m.getConstraint("Time") >>> for con in cons: >>> print(con.name)
- __len__(self: maplpy.Constraint) int ¶
When the constraint entity is a collection of constraints, returns the size of the constraint collection. If this built-in function exists, it means you can use the len method to get the size of the constraint collection.
- Returns
Size of the constraint collection.
- Return type
int
>>> cons = m.getConstraint("Time") >>> len(cons)
- __repr__(self: maplpy.Constraint) str ¶
Returns the string representation of the constraint collection. When the constraint entity is a collection of constraints, returns the string representation of the constraint collection. When the constraint entity is a specific constraint, returns the string representation of the specific constraint. If this built-in function exists, it means you can directly output the class.
- Returns
String representation of the constraint collection or constraint.
- Return type
str
>>> cons = m.getConstraint("Time") >>> print(cons) >>> for con in cons: >>> print(con)
- property body¶
When the constraint entity is a specific constraint, returns the value of the constraint expression calculated based on the current variable values.
- Returns
Value of the constraint expression.
- Return type
float
>>> cons = m.getConstraint("Time") >>> cons[1].body
- property expr¶
When the constraint entity is a specific constraint, returns the string representation of the constraint expression.
- Returns
String representation of the constraint expression.
- Return type
str
>>> cons = m.getConstraint("Time") >>> cons[1].expr
- find(self: maplpy.Constraint, *args) maplpy.Constraint ¶
When the constraint entity is a collection of constraints, returns the specific constraint indexed by
Tuple
.- Parameters
index (Tuple) –
Tuple
index value.- Returns
Specific constraint indexed by
Tuple
in the constraint collection.- Return type
>>> cons = m.getConstraint("Time") >>> t = mp.Tuple(["reheat"]) >>> con_reheat = cons.find(t) >>> con_roll = cons.find("roll")
- property lb¶
When the constraint entity is a specific constraint, returns the lower bound of the constraint.
- Returns
Lower bound of the constraint.
- Return type
float
>>> cons = m.getConstraint("Time") >>> cons[1].lb
- property lbs¶
When the constraint entity is a specific constraint, returns the lower bound of the constraint.
- Returns
Lower bound of the constraint.
- Return type
float
>>> cons = m.getConstraint("Time") >>> cons[1].lbs
- property lslack¶
When the constraint entity is a specific constraint, returns the amount of improvement (difference) relative to the lower bound of the current constraint value.
- Returns
Amount of improvement (difference) relative to the lower bound of the constraint value.
- Return type
float
>>> cons = m.getConstraint("Time") >>> cons[1].lslack
- property name¶
When the constraint entity is a specific constraint, returns the constraint name.
- Returns
Constraint name.
- Return type
str
>>> cons = m.getConstraint("Time") >>> cons[1].name
- property num_instances¶
When the constraint entity is a collection of constraints, returns the number of constraints in the collection. You can also use the len method to get the size of the constraint collection.
- Returns
Number of constraints in the collection.
- Return type
int
>>> cons = m.getConstraint("Time") >>> cons.num_instances
- property slack¶
When the constraint entity is a specific constraint, returns the minimum amount of improvement (minimum difference) relative to the upper and lower bounds of the current constraint value.
- Returns
Amount of improvement (difference) relative to the upper and lower bounds of the constraint value.
- Return type
float
>>> cons = m.getConstraint("Time") >>> cons[1].slack
- property ub¶
When the constraint entity is a specific constraint, returns the upper bound of the constraint.
- Returns
Upper bound of the constraint.
- Return type
float
>>> cons = m.getConstraint("Time") >>> cons[1].ub
- property ubs¶
When the constraint entity is a specific constraint, returns the upper bound of the constraint.
- Returns
Upper bound of the constraint.
- Return type
float
>>> cons = m.getConstraint("Time") >>> cons[1].ubs
- property uslack¶
When the constraint entity is a specific constraint, returns the amount of improvement (difference) relative to the upper bound of the current constraint value.
- Returns
Amount of improvement (difference) relative to the upper bound of the constraint value.
- Return type
float
>>> cons = m.getConstraint("Time") >>> cons[1].uslack
- property value¶
When the constraint entity is a specific constraint, returns the value of the constraint expression calculated based on the current variable values.
- Returns
Value of the constraint expression.
- Return type
float
>>> cons = m.getConstraint("Time") >>> cons[1].value
- class maplpy.DataFrame¶
Bases:
pybind11_object
The DataFrame class is used to produce data tables in bulk, with a structure similar to
excel
tables. Data can be added using native methods or initialized using thepandas.DataFrame
class.DataFrame handles data in tabular form. Each column contains a header and multiple data entries of the same type.¶ Name
Age
Gender
Height
ZhangSan
20
Male
175
LiSi
21
Female
165
Before running the documentation examples of the
DataFrame
interface, execute the following statements to complete the necessary model initialization.>>> data = { "name": ["Zhang San", "Li Si"], "age": [20, 21,], "sex": ["Male", "Female"], "height": [175, 165] } >>> pd = pandas.DataFrame(data) >>> pd.set_index(["name", "age"], inplace=True) >>> md = mp.DataFrame(pd) >>> print(md) name age sex height Zhang San 20 Male 175 Li Si 21 Female 165 >>> m.setData(df) >>> m.display("nameage"); Name : nameage Type : set Index : Pseudo: |0|{} Entries: Multi: |2|{["Zhang San", 20], ["Li Si", 21]} >>> m.display("height"); Name : height Type : number Index : Multi: |2|{["Zhang San", 20], ["Li Si", 21]} Entries: ["Zhang San", 20] -> 175 ["Li Si", 21] -> 165
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: maplpy.DataFrame) -> None
__init__(self: maplpy.DataFrame, dataframe: object) -> None
Initialize the data table object from a
pandas.DataFrame
object.- Parameters:
dataframe(object): pandas.DataFrame object.
>>> data = { "name": ["Zhang San", "Li Si"], "age": [20, 21,], "sex": ["Male", "Female"], "height": [175, 165] } >>> pd = pandas.DataFrame(data) >>> pd.set_index(["name", "age"], inplace=True) >>> md = mp.DataFrame(pd)
- addRow(self: maplpy.DataFrame, *args) maplpy.DataFrame ¶
Adds a row of data to the data table object.
- Parameters
row (list) – A row of data.
- Returns
Returns the data table object to support chain calls.
- Return type
>>> md.add_row(["Wang Wu", 22, "Female", 180]) >>> print(md) name age sex height Zhao San 20 Male 175 Li Si 21 Female 165 Wang Wu 22 Female 180
- property comment¶
‘’, no comments).
- Returns
Data comment character.
- Return type
str
>>> md.comment = "#" >>> print(md.comment) #
- Type
Returns or sets the comment character for data rows when reading a
CSV
file through theread_csv
interface (default
- property data_names¶
Returns or sets the list of names of the current data columns. If not set, the default is to use the list of data column names in the data table.
- Returns
List of data column names in the data table.
- Return type
list
>>> md.data_names = ["sex", "height"] >>> print(md.data_names) ['sex', 'height']
- property delimiter¶
‘,’).
- Returns
Data delimiter.
- Return type
str
>>> print(md.delimiter) , >>> md.delimiter = ";" >>> print(md.delimiter) ;
- Type
Returns or sets the delimiter for data rows when reading a
CSV
file through theread_csv
interface (default
- property encode¶
UTF8
).- Returns
Data encoding.
- Return type
str
>>> print(md.encode) Encode.UTF8 >>> md.encode = mp.Encode.GBK >>> print(md.encode) Encode.GBK
- Type
Returns or sets the encoding to be used when reading a
CSV
file through theread_csv
interface (default
- getValue(self: maplpy.DataFrame, row: int, col: int) object ¶
Gets the element at the specified position in the data table object.
- Parameters
row (int) – Row index.
column (int) – Column index.
- Returns
Element at the specified position in the data table object.
- Return type
int|float|str
>>> print(md.get_value(0, 0)) Zhang San
- property header¶
-1, no header).
- Returns
Number of header rows.
- Return type
int
>>> print(md.header) -1 >>> md.header = 0 >>> print(md.header) 0
- Type
Returns or sets the row number of the table header when reading a
CSV
file through theread_csv
interface (default
- property headers¶
Returns or sets the list of column names of the data table when reading a
CSV
file through theread_csv
interface. Whenheader
is set, the column names of the data table are automatically updated when reading theCSV
file.- Returns
List of data table column names.
- Return type
list
>>> print(md.headers) ['name', 'age', 'sex', 'height'] >>> md.headers = ['nick', 'age', 'sex', 'height'] >>> print(md.headers) ['nick', 'age', 'sex', 'height']
- property index_columns¶
Returns or sets the list of index columns for the data table object.
- Returns
List of index columns for the data table object.
- Return type
int
>>> print(md.index_columns) [0, 1] >>> md.index_columns = [0] >>> print(md.index_columns) [0]
- property index_name¶
Returns or sets the current index column name. If not set, the default is to use the concatenated string of index column names in the data table.
- Returns
Index column name of the data table.
- Return type
str
>>> md.index_name = "id_name" >>> print(md.index_name) id_name
- property pattern¶
‘’, automatic matching). - n - Matches numbers - s - Matches strings
- Returns
Data matching pattern.
- Return type
str
>>> print(md.pattern) >>> md.pattern = "ns" >>> print(md.pattern) ns
- Type
Returns or sets the data matching pattern when reading a
CSV
file through theread_csv
interface (default
- readCSV(self: maplpy.DataFrame, filepath: str) maplpy.DataFrame ¶
Read csv file. When calling this interface, you need to specify: data matching pattern, table header row number (default: -1), number of rows to skip (default: 0), data delimiter (default: ,), comment character (default: #), encoding type (default: UTF8)
- Parameters
filename (str) –
CSV
file path.- Returns
Returns the data table object to support chaining calls.
- Return type
>>> with open("data.csv", "w") as f: f.write( """Empty X Y Index1 Index2 1 2 3 4 a 5 6 7 8 b 9 10 11 12 cde 13 14 15 16 fg 17 18 19 20 hi 21 22 23 24 gkl 25 26 27 28 mn""" ) >>> md.skip = 1 >>> md.delimiter = " " >>> md.pattern = "nsnn" >>> md.read_csv("data.csv") >>> print(md) 1 2 3 4 a 5 6 7 8 b 9 10 11 12 cde 13 14 15 16 fg 17 18 19 20 hi 21 22 23 24 gkl 25 26 27 28 mn
- readCSVAdvanced(self: maplpy.DataFrame, filepath: str, pattern: str = '', header: int = -1, skip: int = 0, delimiter: str = ', ', comment: str = '', encode: maplpy.Encode = <Encode.UTF8: 1>) maplpy.DataFrame ¶
Read csv file, you can specify at the same time: data matching pattern, table header row number (default: -1), number of rows to skip (default: 0), data delimiter (default: ,), comment character (default: #), encoding type (default: UTF8).
- Parameters
filename (str) –
CSV
file path.pattern (str) – Data matching pattern.
header (int) – Table header row number.
skip (int) – Number of rows to skip.
delimiter (str) – Data delimiter.
comment (str) – Comment character.
encode (str) – Data encoding.
- Returns
Returns the data table object to support chaining calls.
- Return type
>>> with open("data.csv", "w") as f: f.write( """Empty X Y Index1 Index2 1 2 3 4 a 5 6 7 8 b 9 10 11 12 cde 13 14 15 16 fg 17 18 19 20 hi 21 22 23 24 gkl 25 26 27 28 mn""" ) >>> md.read_csv("data.csv", "nsnn", skip=1, delimiter=" ", comment="#") >>> print(md) 1 2 3 4 a 5 6 7 8 b 9 10 11 12 cde 13 14 15 16 fg 17 18 19 20 hi 21 22 23 24 gkl 25 26 27 28 mn
- setValue(self: maplpy.DataFrame, row: int, col: int, value: object) None ¶
Sets the element at the specified position in the data table object.
- Parameters
row (int) – Row index.
column (int) – Column index.
value (int|float|str) – Value to set.
- Returns
Returns the data table object to support chain calls.
- Return type
>>> md.set_value(0, 0, "Zhao San") >>> print(md.get_value(0, 0)) Zhao San
- property shape¶
Returns the number of rows and columns of the data table object.
- Returns
Number of rows and columns of the data table object.
- Return type
tuple
>>> print(md.shape) (2, 4)
- property skip¶
-1, start from the non-header row).
- Returns
Number of rows to skip.
- Return type
int
>>> md.skip = 1 >>> print(md.skip) 1
- Type
Returns or sets the number of rows to skip when reading a
CSV
file through theread_csv
interface (default
- property use_columns¶
Returns or sets the list of column indexes to be used when the data table object is added to the model (column indexes start from 0).
- Returns
List of column indexes to be used when the data table object is added to the model.
- Return type
list
>>> print(md.use_columns) [0, 1, 2, 3] >>> md.use_columns = [0, 3] >>> print(md.use_columns) [0, 3]
- class maplpy.Encode¶
Bases:
pybind11_object
The Encode enumeration class is used to specify the file encoding type when reading
CSV
files.Members:
- GBK :
gbk
encoding, used to read files encoded inGB2312
.- UTF8 :
utf-8
encoding, used to read files encoded inUTF-8
.
- GBK = <Encode.GBK: 0>¶
- UTF8 = <Encode.UTF8: 1>¶
- __init__(self: maplpy.Encode, value: int) None ¶
- __repr__(self: object) str ¶
- property name¶
- property value¶
- class maplpy.IntOption¶
Bases:
pybind11_object
The IntOption enum class is used to specify integer type options to configure.
Members:
- SOLVER_OUTPUT :
SOLVER_OUTPUT
encoding, used to specify whether to output solver logs. 0: do not output solver logs; 1: output solver logs. Default is 1.
- SOLVER_OUTPUT = <IntOption.SOLVER_OUTPUT: 1>¶
- __init__(self: maplpy.IntOption, value: int) None ¶
- __repr__(self: object) str ¶
- property name¶
- property value¶
- class maplpy.Integrality¶
Bases:
pybind11_object
The Integrality enum class is used to specify the type of decision variables.
Members:
- CONTINUOUS :
CONTINUOUS
- Continuous variable.- INTEGER :
CONTINUOUS
- Continuous variable.- BINARY :
BINARY
- Binary variable.- IMPLICIT :
IMPLICIT
- Implicit variable.- AUXILIARY :
AUXILIARY
- Auxiliary variable.
- AUXILIARY = <Integrality.AUXILIARY: 4>¶
- BINARY = <Integrality.BINARY: 2>¶
- CONTINUOUS = <Integrality.CONTINUOUS: 0>¶
- IMPLICIT = <Integrality.IMPLICIT: 3>¶
- INTEGER = <Integrality.INTEGER: 1>¶
- __init__(self: maplpy.Integrality, value: int) None ¶
- __repr__(self: object) str ¶
- property name¶
- property value¶
- class maplpy.MAPL¶
Bases:
pybind11_object
The MAPL class is used to represent a model instance. It manages the model’s parameters, variables, constraints, objectives, options, etc.
>>> import maplpy as mp >>> m = mp.MAPL("steel") >>> m.read("steel4.mpl") >>> m.display("rate") >>> m.getConstraint("Time") >>> m.getConstraints() >>> m.getVariable("Make") >>> m.getVariables() >>> m.getObjective("Total_Profit") >>> m.getOption(mp.StrOption.MODEL_NAME) >>> m.setOption(mp.StrOption.SOLVER, "mindopt") >>> m.setOption(mp.StrOption.SOLVER_OPTIONS, "num_threads= 2 print=0") >>> m.solve()
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: maplpy.MAPL) -> None
Initialize a model instance.
>>> m = mp.MAPL()
__init__(self: maplpy.MAPL, arg0: str) -> None
Initialize a model instance.
- Parameters:
name (str): Name of the model instance.
>>> m = mp.MAPL("diet_problem")
- display(self: maplpy.MAPL, name: str = '') None ¶
If no output name is specified, outputs the solutions of all models. If an output name is specified, outputs the information of the specified symbol.
- Parameters
name (str) – Output name.
>>> m.display("rate")
- eval(self: maplpy.MAPL, text: str) None ¶
Read modeling instructions from a string and execute them.
- Parameters
text (str) – Modeling instructions
>>> m.eval()
- getConstraint(self: maplpy.MAPL, name: str) mapl::Constraint ¶
Get a constraint entity by the specified name from the model instance.
- Parameters
name (str) – Constraint name.
- Returns
Constraint entity object.
- Return type
>>> m.getConstraint("Time") <Constraint with 2 constraints>
- getConstraints(self: maplpy.MAPL) List[mapl::Constraint] ¶
Get all constraint entities from the model instance.
- Returns
List of constraint entity objects.
- Return type
list
>>> m.getConstraints() []
- getObjective(self: maplpy.MAPL, name: str) mapl::Objective ¶
Get an objective entity by the specified name from the model instance.
- Parameters
name (str) – Objective name.
- Returns
Objective entity object.
- Return type
>>> m.getObjective("Total_Profit") <Objective with 1 objectives>
- getObjectives(self: maplpy.MAPL) List[mapl::Objective] ¶
Get all objective entities from the model instance.
- Returns
List of objective entity objects.
- Return type
list
>>> m.getObjectives() []
- getVariable(self: maplpy.MAPL, name: str) mapl::Variable ¶
Get a decision variable entity by the specified name from the model instance.
- Parameters
name (str) – Decision variable name.
- Returns
Decision variable entity object.
- Return type
>>> m.getVariable("Make") <Variable with 1 variables>
- getVariables(self: maplpy.MAPL) List[mapl::Variable] ¶
Get all decision variable entities from the model instance.
- Returns
List of decision variable entity objects.
- Return type
list
>>> m.getVariables() []
- read(self: maplpy.MAPL, file_path: str) None ¶
Read a model file.
- Parameters
file_path (str) – Path to the model file.
>>> m.read("steel4.mpl")
- setData(*args, **kwargs)¶
Overloaded function.
setData(self: maplpy.MAPL, dataframe: mapl::DataFrame) -> None
Create corresponding param or set parameters for the model from a
maplpy.DataFrame
data table.- Parameters:
data (mapldy.DataFrame): Data table object.
>>> m.setData(md)
setData(self: maplpy.MAPL, dataframe: object) -> None
Create corresponding param or set parameters for the model from a
pandas.DataFrame
data table.- Parameters:
data (pandas.DataFrame):
pandas.DataFrame
object.
>>> m.setData(pd)
- setOption(*args, **kwargs)¶
Overloaded function.
setOption(self: maplpy.MAPL, option: maplpy.IntOption, value: int) -> None
Set an integer option for the model instance.
- Parameters:
option (IntOption): Option to be set. value (int): Value for the option.
>>> m.setOption(mp.IntOption.SOLVER_OUTPUT, 0)
setOption(self: maplpy.MAPL, option: maplpy.StrOption, value: str) -> None
Set a string option for the model instance.
- Parameters:
option (StrOption): Option to be set. value (str): Value for the option.
>>> m.setOption(mp.StrOption.MODEL_NAME, "diet_problem") >>> m.setOption(mp.StrOption.SOLVER, "mindopt") >>> m.setOption(mp.StrOption.SOLVER_OPTIONS, "num_threads= 2 print=0")
- solve(self: maplpy.MAPL) None ¶
Invoke the solver to solve the model.
>>> m.solve()
- startCmd(self: list) int ¶
Execute the interactive command line.
- Parameters
args (list) – Command line arguments.
- Returns
Return value.
- Return type
int
>>> m.startCmd(["-h"])
- write(self: maplpy.MAPL, dir_path: str = '') None ¶
Write the model file to the specified directory.
- Parameters
dir_path (str) – Directory to write to (default is the current directory).
>>> m.write("model/")
- class maplpy.MaplModel¶
Bases:
pybind11_object
- __init__(self: maplpy.MaplModel) None ¶
- start_cmd(self: int, arg0: list) int ¶
Execute the interactive command line, deprecated interface.
- Parameters
args (list) – Command line arguments.
- Returns
Return value.
- Return type
int
>>> m.startCmd(["-h"])
- class maplpy.Objective¶
Bases:
pybind11_object
Objective - The Objective class is used to bind an objective function entity in the optimization model. Use
MAPL.getObjective
to get and bind the objective function entity. An objective function entity may be a single objective function or a multi-dimensional one; it is a collection of objectives with the same name but different indexes. This entity class allows you to get the properties of the objective function, such as name, expression, and optimal value.>>> import maplpy as mp >>> m = mp.MAPL() >>> m.read("steel4.mpl") >>> o = m.getObjective("Total_Profit") >>> o.expr >>> o.minimization >>> m.optimize() >>> o.value
- __init__(*args, **kwargs)¶
- __iter__(self: maplpy.Objective) Iterator ¶
- __len__(self: maplpy.Objective) int ¶
- __repr__(self: maplpy.Objective) str ¶
- property exitcode¶
Returns the exit code of the solver.
- Returns
Exit code of the solver.
- Return type
int
>>> objs = m.getObjective("Total_Profit") >>> objs[0].exitcode
- property expr¶
When the objective entity is a specific objective, returns the string representation of the objective expression.
- Returns
String representation of the objective expression.
- Return type
str
>>> objs = m.getObjective("Total_Profit") >>> objs[0].expr
- property is_scalar¶
When the objective entity is a specific objective, returns whether the specific objective is a scalar.
- Returns
Whether the objective is a scalar.
- Return type
bool
>>> objs = m.getObjective("Time") >>> objs.is_scalar
- property message¶
If the solver logs are turned off, redirects the logs to this location.
- Returns
Solver logs.
- Return type
str
>>> objs = m.getObjective("Total_Profit") >>> objs[0].message
- property minimization¶
When the objective entity is a specific objective, returns whether the objective is a minimization objective.
- Returns
Whether the objective is a minimization objective.
- Return type
bool
>>> objs = m.getObjective("Total_Profit") >>> objs[0].minimization
- property mstatus¶
When the objective entity is a specific objective, returns the status of the objective.
- Returns
Status of the objective.
- Return type
str
>>> objs = m.getObjective("Total_Profit") >>> objs[0].mstatus
- property name¶
When the objective entity is a specific objective, returns the objective name.
- Returns
Objective name.
- Return type
str
>>> objs = m.getObjective("Total_Profit") >>> objs[0].name
- property sstatus¶
Returns the status of the solver.
- Returns
Status of the solver.
- Return type
str
>>> objs = m.getObjective("Total_Profit") >>> objs[0].sstatus
- property value¶
When the objective entity is a specific objective, returns the value of the objective expression calculated based on the current variable values.
- Returns
Value of the objective expression.
- Return type
float
>>> objs = m.getObjective("Total_Profit") >>> objs[0].value
- property xref¶
When the objective entity is a specific objective, returns all variables related to the objective.
- Returns
All variables related to the objective.
- Return type
list
>>> objs = m.getObjective("Total_Profit") >>> objs[0].xref
- class maplpy.StrOption¶
Bases:
pybind11_object
The StrOption enum class is used to specify string type options to configure.
Members:
- MODEL_NAME :
MODEL_NAME
is used to name the model.>>> m.setOption(mp.StrOption.MODEL_NAME, "diet_problem")
- SOLVER :
SOLVER
is used to specify the solver.>>> m.setOption(mp.StrOption.SOLVER, "mindopt")
- SOLVER_OPTIONS :
SOLVER_OPTIONS
is used to specify solver options.>>> m.setOption(mp.StrOption.SOLVER_OPTIONS, "num_threads= 2 print=0")
- SOLVER_PATH :
SOLVER_PATH
is used to specify the solver path.>>> m.setOption(mp.StrOption.SOLVER_PATH, "/usr/local/bin;/usr/bin")
- MODEL_NAME = <StrOption.MODEL_NAME: 1>¶
- SOLVER = <StrOption.SOLVER: 2>¶
- SOLVER_OPTIONS = <StrOption.SOLVER_OPTIONS: 4>¶
- SOLVER_PATH = <StrOption.SOLVER_PATH: 3>¶
- __init__(self: maplpy.StrOption, value: int) None ¶
- __repr__(self: object) str ¶
- property name¶
- property value¶
- class maplpy.Tuple¶
Bases:
pybind11_object
The Tuple class is used to represent indexes, which can be integers, strings, or floats. It is used similarly to a list, except you need to initialize its size first before assigning values. The role of the index is to extract a single variable, constraint, or objective from an entity.
>>> t = Tuple(3) # Initialize with size 3 >>> t[0] = "xiao_ming" >>> t[1] = 18 >>> t[2] = 175.0 >>> t <Tuple with ("xiao_ming", 18, 175.0)> >>> stu = m.getVariable("stu") >>> xiao_ming = stu.find(t)
- __getitem__(self: maplpy.Tuple, index: int) Union[int, float, str] ¶
Get the value at the specified index in the
Tuple
class. If this built-in function exists, it means you can use the[]
method to get the value by position index.- Parameters
index (int) – Position index.
- Returns
Value at the specified position.
- Return type
int|float|str
>>> t = Tuple(("xiao_ming", 18, 175.0)) >>> t[0] "xiao_ming"
- __init__(*args, **kwargs)¶
Overloaded function.
__init__(self: maplpy.Tuple, size: int) -> None
Initialize the Tuple class.
- Parameters:
size (int): Size of the Tuple class.
>>> t = Tuple(3)
__init__(self: maplpy.Tuple, values: List[Union[int, float, str]]) -> None
Initialize the Tuple class.
- Parameters:
tuple (tuple): Initial values of the Tuple class.
>>> t = Tuple(("xiao_ming", 18, 175.0))
- __len__(self: maplpy.Tuple) int ¶
Returns the length of the
Tuple
class. If this built-in function exists, it means you can use thelen
method to get the length of theTuple
class.- Returns
Length of the
Tuple
class.- Return type
int
>>> t = Tuple(("xiao_ming", 18, 175.0)) >>> len(t)
- __repr__(self: maplpy.Tuple) str ¶
Returns the string representation of the
Tuple
class. If this built-in function exists, it means you can directly output the class.- Returns
String representation of the
Tuple
class.- Return type
str
>>> t = Tuple(("xiao_ming", 18, 175.0)) >>> print(t) <Tuple with ("xiao_ming", 18, 175.0)>
- __setitem__(self: maplpy.Tuple, index: int, value: Union[int, float, str]) None ¶
Set the value at the specified index in the
Tuple
class. If this built-in function exists, it means you can use the[]
method to set the value by position index.- Parameters
index (int) – Position index.
value (int|float|str) – Value to set.
- Returns
None
>>> t = Tuple(("xiao_ming", 18, 175.0)) >>> t[0] = "xiao_ming_new" >>> t <Tuple with ("xiao_ming_new", 18, 175.0)>
- class maplpy.Variable¶
Bases:
pybind11_object
Variable - The Variable class is used to bind a decision variable entity in the optimization model. Use
MAPL.getVariable
to get and bind the decision variable entity. A decision variable entity may be a single decision variable or a multi-dimensional one; it is a collection of decision variables with the same name but different indexes. This entity class allows you to get the properties of the decision variable, such as name, bounds, and expression value.>>> vars = m.getVariable("Make") >>> x.lb = 10 >>> x.ub = 20 >>> x.name = "x" >>> m.optimize() >>> x.value
- __getitem__(self: maplpy.Variable, arg0: int) maplpy.Variable ¶
When the decision variable entity is a collection of decision variables, returns the specific decision variable at the specified position. If this built-in function exists, it means you can use the
[]
method to get the value by position index.- Parameters
position (int) – Position index value.
- Returns
Specific decision variable at the specified position in the collection of decision variables.
- Return type
>>> vars = m.getVariable("Make") >>> var = vars[1]
- __init__(*args, **kwargs)¶
- __iter__(self: maplpy.Variable) Iterator ¶
When the decision variable entity is a collection of decision variables, iterates over the collection of decision variables. If this built-in function exists, it means you can use the for in method to iterate.
>>> vars = m.getVariable("Make") >>> for var in vars: >>> print(var.name)
- __len__(self: maplpy.Variable) int ¶
When the decision variable entity is a collection of decision variables, returns the size of the collection of decision variables. If this built-in function exists, it means you can use the len method to get the size of the collection of decision variables.
- Returns
Size of the collection of decision variables.
- Return type
int
>>> vars = m.getVariable("Make") >>> len(vars)
- __next__(self: mapl::Variable::iterator) mapl::Variable::iterator ¶
- __repr__(self: maplpy.Variable) str ¶
Returns the string representation of the collection of decision variables. When the decision variable entity is a collection of decision variables, returns the string representation of the collection of decision variables. When the decision variable entity is a specific decision variable, returns the string representation of the specific decision variable. If this built-in function exists, it means you can directly output the class.
- Returns
String representation of the collection of decision variables or decision variable.
- Return type
str
>>> vars = m.getVariable("Make") >>> print(vars) >>> for var in vars: >>> print(var)
- find(self: maplpy.Variable, *args) maplpy.Variable ¶
When the decision variable entity is a collection of decision variables, returns the specific decision variable indexed by
Tuple
.- Parameters
index (Tuple) –
Tuple
index value.- Returns
Specific decision variable indexed by
Tuple
in the collection of decision variables.- Return type
>>> vars = m.getVariable("Make") >>> t = mp.Tuple(["plate"]) >>> var_plate = vars.find(t) >>> var_bands = vars.find("bands")
- fix(*args, **kwargs)¶
Overloaded function.
fix(self: maplpy.Variable) -> maplpy.Variable
When the decision variable entity is a specific decision variable, fixes the current decision variable value.
>>> vars = m.getVariable("Make") >>> vars[1].fix()
fix(self: maplpy.Variable, value: float) -> maplpy.Variable
When the decision variable entity is a specific decision variable, fixes the current decision variable value to the specified value.
- Parameters:
value (float): Specified value.
>>> vars = m.getVariable("Make") >>> vars[1].fix(5000)
- property index¶
When the decision variable entity is a specific decision variable, returns the index of the decision variable in the model.
- Returns
Index of the decision variable.
- Return type
int
>>> vars = m.getVariable("Make") >>> vars[1].index
- property init¶
When the decision variable entity is a specific decision variable, returns the initial value of the decision variable.
- Returns
Initial value of the decision variable.
- Return type
float
>>> vars = m.getVariable("Make") >>> vars[1].init
- property integrality¶
When the decision variable entity is a specific decision variable, returns the type of the decision variable.
- Returns
Type of the decision variable.
- Return type
>>> vars = m.getVariable("Make") >>> vars[1].integrality
- property lb¶
When the decision variable entity is a specific decision variable, returns the lower bound of the decision variable.
- Returns
Lower bound of the decision variable.
- Return type
float
>>> vars = m.getVariable("Make") >>> vars[1].lb
- property lrc¶
When the decision variable entity is a specific decision variable, returns the amount of improvement (difference) relative to the lower bound of the current decision variable value.
- Returns
Amount of improvement (difference) relative to the lower bound of the decision variable value.
- Return type
float
>>> vars = m.getVariable("Make") >>> vars[1].lrc
- property name¶
When the decision variable entity is a specific decision variable, returns the decision variable name.
- Returns
Decision variable name.
- Return type
str
>>> vars = m.getVariable("Make") >>> vars[1].name
- property num_instances¶
When the decision variable entity is a collection of decision variables, returns the number of decision variables in the collection. You can also use the len method to get the size of the collection of decision variables.
- Returns
Number of decision variables in the collection.
- Return type
int
>>> vars = m.getVariable("Make") >>> vars.num_instances
- property rc¶
When the decision variable entity is a specific decision variable, returns the minimum amount of improvement (minimum difference) relative to the upper and lower bounds of the current decision variable value.
- Returns
Amount of improvement (difference) relative to the upper and lower bounds of the decision variable value.
- Return type
float
>>> vars = m.getVariable("Make") >>> vars[1].rc
- setValue(self: maplpy.Variable, value: float) maplpy.Variable ¶
When the decision variable entity is a specific decision variable, sets the current decision variable value.
- Parameters
value (float) – Specified value.
>>> vars = m.getVariable("Make") >>> vars[1].setValue(2400)
- property status¶
not used).
- Returns
Status of the decision variable.
- Return type
str
>>> vars = m.getVariable("Make") >>> vars[1].status
- Type
When the decision variable entity is a specific decision variable, returns the status of the current decision variable (
in
- Type
used;
unused
- property ub¶
When the decision variable entity is a specific decision variable, returns the upper bound of the decision variable.
- Returns
Upper bound of the decision variable.
- Return type
float
>>> vars = m.getVariable("Make") >>> vars[1].ub
- unfix(self: maplpy.Variable) maplpy.Variable ¶
When the decision variable entity is a specific decision variable, unfixes the current decision variable value.
>>> vars = m.getVariable("Make") >>> vars[1].unfix()
- property urc¶
When the decision variable entity is a specific decision variable, returns the amount of improvement (difference) relative to the upper bound of the current decision variable value.
- Returns
Amount of improvement (difference) relative to the upper bound of the decision variable value.
- Return type
float
>>> vars = m.getVariable("Make") >>> vars[1].urc
- property value¶
When the decision variable entity is a specific decision variable, returns the value of the decision variable expression calculated based on the current variable values.
- Returns
Value of the decision variable expression.
- Return type
float
>>> vars = m.getVariable("Make") >>> vars[1].value