5.2.4. Python 的MILP建模与优化¶
在本节中,我们将使用 MindOpt Python 语言的 API 来建模以及求解 混合整数线性规划问题示例 中的问题。
5.2.4.1. 按行输入: mdo_milo_ex1¶
首先,引入 Python 包:
26from mindoptpy import *
并创建优化模型:
33 # Step 1. Create a model and change the parameters.
34 model = MdoModel()
接下来,我们通过 mindoptpy.MdoModel.set_int_attr()
将目标函数设置为 最小化 ,并调用 mindoptpy.MdoModel.add_var()
来添加四个优化变量,定义其下界、上界、名称和类型(有关 mindoptpy.MdoModel.set_int_attr()
和 mindoptpy.MdoModel.add_var()
的详细使用方式,请参考 Python 接口函数):
37 # Step 2. Input model.
38 # Change to minimization problem.
39 model.set_int_attr(MDO_INT_ATTR.MIN_SENSE, 1)
40
41 # Add variables.
42 x = []
43 x.append(model.add_var(0.0, 10.0, 1.0, None, "x0", True))
44 x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x1", True))
45 x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x2", True))
46 x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x3", False))
Note
在函数 mindoptpy.MdoModel.add_var()
中,最后一个参数位是 is_integer
,设置为 True
代表这个变量是整形变量。
接着,我们开始添加线性约束:
48 # Add constraints.
49 # Note that the nonzero elements are inputted in a row-wise order here.
50 model.add_cons(1.0, MDO_INFINITY, 1.0 * x[0] + 1.0 * x[1] + 2.0 * x[2] + 3.0 * x[3], "c0")
51 model.add_cons(1.0, 1.0, 1.0 * x[0] - 1.0 * x[2] + 6.0 * x[3], "c1")
问题输入完成后,再调用 mindoptpy.MdoModel.solve_prob()
求解优化问题,并用 mindoptpy.MdoModel.display_results()
来查看优化结果:
53 # Step 3. Solve the problem and populate the result.
54 model.solve_prob()
55 model.display_results()
最后,我们调用 mindoptpy.MdoModel.free_mdl()
来释放内存:
65 # Step 4. Free the model.
66 model.free_mdl()
文件链接 mdo_milo_ex1.py 提供了完整源代码:
1"""
2/**
3 * Description
4 * -----------
5 *
6 * Linear optimization (row-wise input).
7 *
8 * Formulation
9 * -----------
10 *
11 * Minimize
12 * obj: 1 x0 + 1 x1 + 1 x2 + 1 x3
13 * Subject To
14 * c1 : 1 x0 + 1 x1 + 2 x2 + 3 x3 >= 1
15 * c2 : 1 x0 - 1 x2 + 6 x3 = 1
16 * Bounds
17 * 0 <= x0 <= 10
18 * 0 <= x1
19 * 0 <= x2
20 * 0 <= x3
21 * Integers
22 * x0 x1 x2
23 * End
24 */
25"""
26from mindoptpy import *
27
28
29if __name__ == "__main__":
30
31 MDO_INFINITY = MdoModel.get_infinity()
32
33 # Step 1. Create a model and change the parameters.
34 model = MdoModel()
35
36 try:
37 # Step 2. Input model.
38 # Change to minimization problem.
39 model.set_int_attr(MDO_INT_ATTR.MIN_SENSE, 1)
40
41 # Add variables.
42 x = []
43 x.append(model.add_var(0.0, 10.0, 1.0, None, "x0", True))
44 x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x1", True))
45 x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x2", True))
46 x.append(model.add_var(0.0, MDO_INFINITY, 1.0, None, "x3", False))
47
48 # Add constraints.
49 # Note that the nonzero elements are inputted in a row-wise order here.
50 model.add_cons(1.0, MDO_INFINITY, 1.0 * x[0] + 1.0 * x[1] + 2.0 * x[2] + 3.0 * x[3], "c0")
51 model.add_cons(1.0, 1.0, 1.0 * x[0] - 1.0 * x[2] + 6.0 * x[3], "c1")
52
53 # Step 3. Solve the problem and populate the result.
54 model.solve_prob()
55 model.display_results()
56
57 except MdoError as e:
58 print("Received Mindopt exception.")
59 print(" - Code : {}".format(e.code))
60 print(" - Reason : {}".format(e.message))
61 except Exception as e:
62 print("Received exception.")
63 print(" - Reason : {}".format(e))
64 finally:
65 # Step 4. Free the model.
66 model.free_mdl()