5.3.4. Java 的QP建模和优化

在本节中,我们将使用 MindOpt JAVA API,以按行输入的形式来建模以及求解 二次规划问题示例 中的问题。

首先,引入头文件:

25import com.alibaba.damo.mindopt.*;

并创建优化模型:

31        MDOEnv env = new MDOEnv(); 
32        MDOModel model = new MDOModel(env); 
33        model.set(MDO.StringAttr.ModelName, "QP_01");

接下来,我们通过 MDOModel.set 将目标函数设置为 最小化,并调用 MDOModel.addVar 来添加四个优化变量,定义其下界、上界、名称和类型(有关 MDOModel.setMDOModel.addVar 的详细使用方式,请参考 JAVA API):

36            // Change to minimization problem.
37            model.set(MDO.IntAttr.ModelSense, MDO.MINIMIZE);
38
39            // Add variables.
40            MDOVar[] x = new MDOVar[4];
41            x[0] = model.addVar(0.0,         10.0, 0.0, 'C', "x0");
42            x[1] = model.addVar(0.0, MDO.INFINITY, 0.0, 'C', "x1");
43            x[2] = model.addVar(0.0, MDO.INFINITY, 0.0, 'C', "x2");
44            x[3] = model.addVar(0.0, MDO.INFINITY, 0.0, 'C', "x3");

接着,我们开始添加线性约束:

64            // Add constraints.
65            double[][] consV = new double[][] {
66                { 1.0, 1.0, 2.0, 3.0 },
67                { 1.0, 0,  -1.0, 6.0 } 
68            };
69
70            MDOLinExpr tempLinExpr1 = new MDOLinExpr();
71            tempLinExpr1.addTerms(consV[0], x);
72            model.addConstr(tempLinExpr1, MDO.GREATER_EQUAL, 1.0, "c0");
73
74            MDOLinExpr tempLinExpr2 = new MDOLinExpr();
75            tempLinExpr2.addTerms(consV[1], x);
76            model.addConstr(tempLinExpr2, MDO.EQUAL, 1.0, "c1");    

然后,我们开始设置二次目标函数。我们创建一个二次表达式 MDOQuadExpr , 再调用 MDOQuadExpr.addTerms 来设置目标函数线性部分。这里 obj_idx 表示线性部分的索引,obj_val 表示与 obj_idx 中的索引相对应的非零系数值。

49            // Add objective linear term: 1 x0 + 1 x1 + 1 x2 + 1 x3 
50            int      obj_nnz = 4;
51            MDOVar[] obj_idx = new MDOVar[] { x[0], x[1], x[2], x[3] };
52            double[] obj_val = new double[] { 1.0,  1.0,  1.0,  1.0 };
53            obj.addTerms(obj_val, obj_idx);

然后,调用 MDOQuadExpr.addTerms 来设置目标的二次项系数 \(Q\)。 其中,qo_values 表示要添加的二次项的系数,qo_col1qo_col2 表示与qo_values相对应的二次项的第一个变量和第二个变量。

55            // Add quadratic part in objective: 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] 
56            int      qo_nnz    = 5;
57            MDOVar[] qo_col1   = new MDOVar[] { x[0], x[1], x[2], x[3], x[0] };
58            MDOVar[] qo_col2   = new MDOVar[] { x[0], x[1], x[2], x[3], x[1] };
59            double[] qo_values = new double[] { 0.5,  0.5,  0.5,  0.5,  0.5 };
60            obj.addTerms(qo_values, qo_col1, qo_col2);

最后,我们调用 MDOModel.setObjective 设定优化目标与方向。

62            model.setObjective(obj, MDO.MINIMIZE);

问题输入完成后,调用 MDOModel.optimize 求解优化问题:

79            model.optimize();

示例 MdoQoEx1.java 提供了完整源代码:

 1/**
 2 *  Description
 3 *  -----------
 4 *
 5 *  Quadratic optimization (row-wise input).
 6 *
 7 *  Formulation
 8
 9 *  -----------
10 *
11 *  Minimize
12 *    obj: 1 x0 + 1 x1 + 1 x2 + 1 x3 
13 *         + 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1]
14 *  Subject To
15 *   c0 : 1 x0 + 1 x1 + 2 x2 + 3 x3 >= 1
16 *   c1 : 1 x0 - 1 x2 + 6 x3 = 1
17 *  Bounds
18 *    0 <= x0 <= 10
19 *    0 <= x1
20 *    0 <= x2
21 *    0 <= x3
22 *  End
23 */
24
25import com.alibaba.damo.mindopt.*;
26import java.util.*;
27
28public class MdoQoEx1 { 
29    public static void main(String[] args) throws MDOException {
30        // Create model
31        MDOEnv env = new MDOEnv(); 
32        MDOModel model = new MDOModel(env); 
33        model.set(MDO.StringAttr.ModelName, "QP_01");
34
35        try {
36            // Change to minimization problem.
37            model.set(MDO.IntAttr.ModelSense, MDO.MINIMIZE);
38
39            // Add variables.
40            MDOVar[] x = new MDOVar[4];
41            x[0] = model.addVar(0.0,         10.0, 0.0, 'C', "x0");
42            x[1] = model.addVar(0.0, MDO.INFINITY, 0.0, 'C', "x1");
43            x[2] = model.addVar(0.0, MDO.INFINITY, 0.0, 'C', "x2");
44            x[3] = model.addVar(0.0, MDO.INFINITY, 0.0, 'C', "x3");
45
46            // Create a QuadExpr for quadratic objective
47            MDOQuadExpr obj = new MDOQuadExpr();
48
49            // Add objective linear term: 1 x0 + 1 x1 + 1 x2 + 1 x3 
50            int      obj_nnz = 4;
51            MDOVar[] obj_idx = new MDOVar[] { x[0], x[1], x[2], x[3] };
52            double[] obj_val = new double[] { 1.0,  1.0,  1.0,  1.0 };
53            obj.addTerms(obj_val, obj_idx);
54
55            // Add quadratic part in objective: 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] 
56            int      qo_nnz    = 5;
57            MDOVar[] qo_col1   = new MDOVar[] { x[0], x[1], x[2], x[3], x[0] };
58            MDOVar[] qo_col2   = new MDOVar[] { x[0], x[1], x[2], x[3], x[1] };
59            double[] qo_values = new double[] { 0.5,  0.5,  0.5,  0.5,  0.5 };
60            obj.addTerms(qo_values, qo_col1, qo_col2);
61
62            model.setObjective(obj, MDO.MINIMIZE);
63
64            // Add constraints.
65            double[][] consV = new double[][] {
66                { 1.0, 1.0, 2.0, 3.0 },
67                { 1.0, 0,  -1.0, 6.0 } 
68            };
69
70            MDOLinExpr tempLinExpr1 = new MDOLinExpr();
71            tempLinExpr1.addTerms(consV[0], x);
72            model.addConstr(tempLinExpr1, MDO.GREATER_EQUAL, 1.0, "c0");
73
74            MDOLinExpr tempLinExpr2 = new MDOLinExpr();
75            tempLinExpr2.addTerms(consV[1], x);
76            model.addConstr(tempLinExpr2, MDO.EQUAL, 1.0, "c1");    
77    
78            // Solve the problem and populate optimization result.
79            model.optimize();
80
81            if (model.get(MDO.IntAttr.Status) == MDO.OPTIMAL) {
82                System.out.println("Optimal objective value is: " + model.get(MDO.DoubleAttr.ObjVal));
83                System.out.println("Decision variables: ");
84                for (int i = 0; i < 4; i++) {
85                    System.out.println( "x[" + i + "] = " + x[i].get(MDO.DoubleAttr.X));
86                }
87            }
88            else {
89                System.out.println("No feasible solution.");
90            }
91        } catch (Exception e) { 
92            System.out.println("Exception during optimization");
93            e.printStackTrace();
94        } finally { 
95            model.dispose();
96            env.dispose();
97        }
98    }
99}