5.4.2. QCP Modeling and Optimization in CΒΆ
In this chapter, we will use MindOpt C API to model and solve the problem in Example of Quadratically Constrained Programming.
Include the header file:
27#include "Mindopt.h"
Create an optimization model model
:
78 CHECK_RESULT(MDOemptyenv(&env));
79 CHECK_RESULT(MDOstartenv(env));
80 CHECK_RESULT(MDOnewmodel(env, &model, MODEL_NAME, 0, NULL, NULL, NULL, NULL, NULL));
Next, we set the optimization sense to minimization via MDOsetIntAttr()
and four variables are added by calling MDOaddvar()
. Their lower bounds, upper bounds, names, types and linear objective coefficients are defined as follows (for more details on how to use MDOsetIntAttr()
and MDOaddvar()
, please refer to Attributes):
86 /* Change to minimization problem. */
87 CHECK_RESULT(MDOsetintattr(model, MODEL_SENSE, MDO_MINIMIZE));
88
89 /* Add variables. */
90 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, 10.0, MDO_CONTINUOUS, "x0"));
91 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x1"));
92 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x2"));
93 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x3"));
Note
The non-zero elements of the matrix \(A\) will be inputted later. After adding the four aforementioned variables, certain parameters of the constraint matrix, specifically size
, indices
, and value
, are set to 0
, NULL
, and NULL
, respectively. This means that, as of now, model
has no constraints.
Next, we will introduce the quadratic terms in the objective. Three arrays are utilized for this purpose. Specifically, qo_col1
, qo_col2
, and qo_values
record the row indices, column indices, and values of all the non-zero quadratic terms.
49 /* Quadratic part in objective: 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] */
50 int qo_nnz = 5;
51 int qo_col1[] = { 0, 1, 2, 3, 0 };
52 int qo_col2[] = { 0, 1, 2, 3, 1 };
53 double qo_values[] = { 0.5, 0.5, 0.5, 0.5, 0.5 };
We call MDOaddqpterms()
to set the quadratic terms of the objective.
95 /* Add quadratic objective term. */
96 CHECK_RESULT(MDOaddqpterms(model, qo_nnz, qo_col1, qo_col2, qo_values));
Now we start to add quadratic constraints to the model. The linear part is constructed in the same way as in the objective.
55 /* Linear part in the first constraint: 1 x0 + 1 x1 + 2 x2 + 3 x3 */
56 int row1_nnz = 4;
57 int row1_idx[] = { 0, 1, 2, 3 };
58 double row1_val[] = { 1.0, 1.0, 2.0, 3.0 };
65 /* Linear part in the second constraint: 1 x0 - 1 x2 + 6 x3 */
66 int row2_nnz = 3;
67 int row2_idx[] = { 0, 2, 3 };
68 double row2_val[] = { 1.0, -1.0, 6.0 };
The quadratic part is constructed in the same way as it is in the objective as well.
59 /* Quadratic part in the first constraint: - 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] */
60 int qc1_nnz = 5;
61 int qc1_col1[] = { 0, 1, 2, 3, 0 };
62 int qc1_col2[] = { 0, 1, 2, 3, 1 };
63 double qc1_values[] = { -0.5, -0.5, -0.5, -0.5, -0.5 };
69 /* Quadratic part in the second constraint: 1/2 [x1^2] */
70 int qc2_nnz = 1;
71 int qc2_col1[] = { 1 };
72 int qc2_col2[] = { 1 };
73 double qc2_values[] = { 0.5 };
We call MDOaddqconstr()
to input the linear constraints into model
:
98 /* Add quadratic constraints. */
99 CHECK_RESULT(MDOaddqconstr(model, row1_nnz, row1_idx, row1_val, qc1_nnz, qc1_col1, qc1_col2, qc1_values, MDO_GREATER_EQUAL, 1.0, "c0"));
100 CHECK_RESULT(MDOaddqconstr(model, row2_nnz, row2_idx, row2_val, qc2_nnz, qc2_col1, qc2_col2, qc2_values, MDO_LESS_EQUAL, 1.0, "c1"));
Once the model is constructed, we call MDOoptimize()
to solve the problem:
105 /* Solve the problem. */
106 CHECK_RESULT(MDOoptimize(model));
We can retrieive the optimal objective value and solutions via getting attributes:
108 CHECK_RESULT(MDOgetintattr(model, STATUS, &status));
109 if (status == MDO_OPTIMAL)
110 {
111 CHECK_RESULT(MDOgetdblattr(model, OBJ_VAL, &obj));
112 printf("The optimal objective value is: %f\n", obj);
113 for (int i = 0; i < 4; ++i)
114 {
115 CHECK_RESULT(MDOgetdblattrelement(model, X, i, &x));
116 printf("x[%d] = %f\n", i, x);
117 }
118 }
119 else
120 {
121 printf("No feasible solution.\n");
122 }
Finally, we call MDOfreemodel()
and MDOfreeenv()
to free the model:
30#define RELEASE_MEMORY \
31 MDOfreemodel(model); \
32 MDOfreeenv(env);
127 RELEASE_MEMORY;
The complete example code is provided in MdoQcoEx1.c:
1/**
2 * Description
3 * -----------
4 *
5 * Quadratically constrained quadratic optimization (row-wise input).
6 *
7 * Formulation
8 * -----------
9 *
10 * Minimize
11 * obj: 1 x0 + 1 x1 + 1 x2 + 1 x3
12 * + 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1]
13 *
14 * Subject To
15 * c0 : 1 x0 + 1 x1 + 2 x2 + 3 x3 - 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] >= 1
16 * c1 : 1 x0 - 1 x2 + 6 x3 + 1/2 [x1^2] <= 1
17 * Bounds
18 * 0 <= x0 <= 10
19 * 0 <= x1
20 * 0 <= x2
21 * 0 <= x3
22 * End
23 */
24
25#include <stdio.h>
26#include <stdlib.h>
27#include "Mindopt.h"
28
29/* Macro to check the return code */
30#define RELEASE_MEMORY \
31 MDOfreemodel(model); \
32 MDOfreeenv(env);
33#define CHECK_RESULT(code) { int res = code; if (res != 0) { fprintf(stderr, "Bad code: %d\n", res); RELEASE_MEMORY; return (res); } }
34#define MODEL_NAME "QCP_01"
35#define MODEL_SENSE "ModelSense"
36#define STATUS "Status"
37#define OBJ_VAL "ObjVal"
38#define X "X"
39
40int main(void)
41{
42 /* Variables. */
43 MDOenv *env;
44 MDOmodel *model;
45 double obj, x;
46 int status, i;
47
48 /* Prepare model data. */
49 /* Quadratic part in objective: 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] */
50 int qo_nnz = 5;
51 int qo_col1[] = { 0, 1, 2, 3, 0 };
52 int qo_col2[] = { 0, 1, 2, 3, 1 };
53 double qo_values[] = { 0.5, 0.5, 0.5, 0.5, 0.5 };
54
55 /* Linear part in the first constraint: 1 x0 + 1 x1 + 2 x2 + 3 x3 */
56 int row1_nnz = 4;
57 int row1_idx[] = { 0, 1, 2, 3 };
58 double row1_val[] = { 1.0, 1.0, 2.0, 3.0 };
59 /* Quadratic part in the first constraint: - 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1] */
60 int qc1_nnz = 5;
61 int qc1_col1[] = { 0, 1, 2, 3, 0 };
62 int qc1_col2[] = { 0, 1, 2, 3, 1 };
63 double qc1_values[] = { -0.5, -0.5, -0.5, -0.5, -0.5 };
64
65 /* Linear part in the second constraint: 1 x0 - 1 x2 + 6 x3 */
66 int row2_nnz = 3;
67 int row2_idx[] = { 0, 2, 3 };
68 double row2_val[] = { 1.0, -1.0, 6.0 };
69 /* Quadratic part in the second constraint: 1/2 [x1^2] */
70 int qc2_nnz = 1;
71 int qc2_col1[] = { 1 };
72 int qc2_col2[] = { 1 };
73 double qc2_values[] = { 0.5 };
74
75 /*------------------------------------------------------------------*/
76 /* Step 1. Create environment and model. */
77 /*------------------------------------------------------------------*/
78 CHECK_RESULT(MDOemptyenv(&env));
79 CHECK_RESULT(MDOstartenv(env));
80 CHECK_RESULT(MDOnewmodel(env, &model, MODEL_NAME, 0, NULL, NULL, NULL, NULL, NULL));
81
82
83 /*------------------------------------------------------------------*/
84 /* Step 2. Input model. */
85 /*------------------------------------------------------------------*/
86 /* Change to minimization problem. */
87 CHECK_RESULT(MDOsetintattr(model, MODEL_SENSE, MDO_MINIMIZE));
88
89 /* Add variables. */
90 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, 10.0, MDO_CONTINUOUS, "x0"));
91 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x1"));
92 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x2"));
93 CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x3"));
94
95 /* Add quadratic objective term. */
96 CHECK_RESULT(MDOaddqpterms(model, qo_nnz, qo_col1, qo_col2, qo_values));
97
98 /* Add quadratic constraints. */
99 CHECK_RESULT(MDOaddqconstr(model, row1_nnz, row1_idx, row1_val, qc1_nnz, qc1_col1, qc1_col2, qc1_values, MDO_GREATER_EQUAL, 1.0, "c0"));
100 CHECK_RESULT(MDOaddqconstr(model, row2_nnz, row2_idx, row2_val, qc2_nnz, qc2_col1, qc2_col2, qc2_values, MDO_LESS_EQUAL, 1.0, "c1"));
101
102 /*------------------------------------------------------------------*/
103 /* Step 3. Solve the problem and populate optimization result. */
104 /*------------------------------------------------------------------*/
105 /* Solve the problem. */
106 CHECK_RESULT(MDOoptimize(model));
107
108 CHECK_RESULT(MDOgetintattr(model, STATUS, &status));
109 if (status == MDO_OPTIMAL)
110 {
111 CHECK_RESULT(MDOgetdblattr(model, OBJ_VAL, &obj));
112 printf("The optimal objective value is: %f\n", obj);
113 for (int i = 0; i < 4; ++i)
114 {
115 CHECK_RESULT(MDOgetdblattrelement(model, X, i, &x));
116 printf("x[%d] = %f\n", i, x);
117 }
118 }
119 else
120 {
121 printf("No feasible solution.\n");
122 }
123
124 /*------------------------------------------------------------------*/
125 /* Step 4. Free the model. */
126 /*------------------------------------------------------------------*/
127 RELEASE_MEMORY;
128
129 return 0;
130}