5.5.2. C 的MIQP建模和优化

在本节中,我们将使用 MindOpt C API,以按行输入的形式来建模以及求解 MIQP题示例 中的问题。

首先,引入头文件:

29#include "Mindopt.h"

创建优化模型:

93    CHECK_RESULT(MDOemptyenv(&env));
94    CHECK_RESULT(MDOstartenv(env));
95    CHECK_RESULT(MDOnewmodel(env, &model, MODEL_NAME, 0, NULL, NULL, NULL, NULL, NULL));

接下来,我们通过 MDOsetintattr() 将目标函数设置为 最小化,并调用 MDOaddvar() 来添加四个优化变量。(更多API和使用方式,请参考 C API):

105    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0,         10.0, MDO_INTEGER, "x0"));
106    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 2.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x1"));
107    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x2"));
108    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x3"));

Note

在函数 MDOaddvar() 中一个参数位是 vtype,设置为 MDO_INTEGER 代表这个变量是整形变量。

接下来我们将添加二次规划中的目标函数的二次项系数。我们使用以下三列数组来定义:其中 qo_col1qo_col2 分别记录二次项中所有非零项的两个变量索引,而 qo_values 是与之相对应的非零系数值。

68    int qo_col1[] = 
69    {
70        0, 
71        1,   1,
72                  2,
73                       3  
74    };
75    int qo_col2[] =
76    {
77        0,
78        0,   1,
79                  2,
80                       3
81    };
82    double qo_values[] =
83    {
84        1.0,
85        0.5, 1.0,
86                  1.0, 
87                       1.0
88    };

我们调用 MDOaddqpterms() 设置目标的二次项:

110    /* Add quadratic objective term. */
111    CHECK_RESULT(MDOaddqpterms(model, 5, qo_col1, qo_col2, qo_values));

调用 MDOaddconstr() 来输入约束:

116    CHECK_RESULT(MDOaddconstr(model, 4, row1_idx, row1_val, MDO_GREATER_EQUAL, 1.0, "c0"));
117    CHECK_RESULT(MDOaddconstr(model, 3, row2_idx, row2_val, MDO_EQUAL,         1.0, "c1"));

问题输入完成后,再调用 MDOoptimize() 求解优化问题。

124    CHECK_RESULT(MDOoptimize(model));

然后,我们可以通过获取属性值的方式来获取求解后的最优值 (optimal value) 和最优解 (optimal solution).

128    if (status == MDO_OPTIMAL) 
129    {
130        CHECK_RESULT(MDOgetdblattr(model, OBJ_VAL, &obj));
131        printf("The optimal objective value is: %f\n", obj);
132        for (int i = 0; i < 4; ++i) 
133        {
134            CHECK_RESULT(MDOgetdblattrelement(model, X, i, &x));
135            printf("x[%d] = %f\n", i, x);
136        }
137    } 

最后,调用 MDOfreemodel()MDOfreeenv() 来释放模型:

30/* Macro to check the return code */
31#define RELEASE_MEMORY  \
146    RELEASE_MEMORY;

示例 MdoMIQPEx1.c 提供了完整源代码:

  1/**
  2 *  Description
  3 *  -----------
  4 *
  5 *  Mixed Integer Quadratic optimization (row-wise input).
  6 *
  7 *  Formulation
  8
  9 *  -----------
 10 *
 11 *  Minimize
 12 *    obj: 1 x0 + 1 x1 + 1 x2 + 1 x3 
 13 *         + 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1]
 14 *  Subject To
 15 *   c0 : 1 x0 + 1 x1 + 2 x2 + 3 x3 >= 1
 16 *   c1 : 1 x0 - 1 x2 + 6 x3 = 1
 17 *  Bounds
 18 *    0 <= x0 <= 10
 19 *    0 <= x1
 20 *    0 <= x2
 21 *    0 <= x3
 22 *  Integers
 23 *  x0 
 24 *  End
 25 */
 26
 27#include <stdio.h>
 28#include <stdlib.h>
 29#include "Mindopt.h"
 30
 31/* Macro to check the return code */
 32#define RELEASE_MEMORY  \
 33    MDOfreemodel(model);    \
 34    MDOfreeenv(env);
 35#define CHECK_RESULT(code) { int res = code; if (res != 0) { fprintf(stderr, "Bad code: %d\n", res);  RELEASE_MEMORY; return (res); } }
 36#define MODEL_NAME  "MIQCP_01"
 37#define MODEL_SENSE "ModelSense"
 38#define STATUS      "Status"
 39#define OBJ_VAL     "ObjVal"
 40#define X           "X"
 41
 42int main(void)
 43{
 44    /* Variables. */
 45    MDOenv *env;
 46    MDOmodel *model;
 47    double obj, x;
 48    int status, i;
 49
 50    /* Model data. */
 51    int    row1_idx[] = { 0,   1,   2,   3   };
 52    double row1_val[] = { 1.0, 1.0, 2.0, 3.0 };
 53    int    row2_idx[] = { 0,    2,   3   };
 54    double row2_val[] = { 1.0, -1.0, 6.0 };
 55
 56    /* Quadratic objective matrix Q.
 57     * 
 58     *  Note.
 59     *  1. The objective function is defined as c^Tx + 1/2 x^TQx, where Q is stored with coordinate format.
 60     *  2. Q will be scaled by 1/2 internally.
 61     *  3. To ensure the symmetricity of Q, user needs to input only the lower triangular part.
 62     * 
 63     * Q = [ 1.0  0.5  0    0   ]
 64     *     [ 0.5  1.0  0    0   ]
 65     *     [ 0.0  0.0  1.0  0   ]
 66     *     [ 0    0    0    1.0 ]
 67     */
 68    int qo_col1[] = 
 69    {
 70        0, 
 71        1,   1,
 72                  2,
 73                       3  
 74    };
 75    int qo_col2[] =
 76    {
 77        0,
 78        0,   1,
 79                  2,
 80                       3
 81    };
 82    double qo_values[] =
 83    {
 84        1.0,
 85        0.5, 1.0,
 86                  1.0, 
 87                       1.0
 88    };
 89
 90     /*------------------------------------------------------------------*/
 91    /* Step 1. Create environment and model.                            */
 92    /*------------------------------------------------------------------*/
 93    CHECK_RESULT(MDOemptyenv(&env));
 94    CHECK_RESULT(MDOstartenv(env));
 95    CHECK_RESULT(MDOnewmodel(env, &model, MODEL_NAME, 0, NULL, NULL, NULL, NULL, NULL));
 96
 97
 98    /*------------------------------------------------------------------*/
 99    /* Step 2. Input model.                                             */
100    /*------------------------------------------------------------------*/
101    /* Change to minimization problem. */
102    CHECK_RESULT(MDOsetintattr(model, MODEL_SENSE, MDO_MINIMIZE));
103
104    /* Add variables. */
105    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0,         10.0, MDO_INTEGER, "x0"));
106    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 2.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x1"));
107    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x2"));
108    CHECK_RESULT(MDOaddvar(model, 0, NULL, NULL, 1.0, 0, MDO_INFINITY, MDO_CONTINUOUS, "x3"));
109
110    /* Add quadratic objective term. */
111    CHECK_RESULT(MDOaddqpterms(model, 5, qo_col1, qo_col2, qo_values));
112
113    /* Add constraints.
114     * Note that the nonzero elements are inputted in a row-wise order here.
115     */
116    CHECK_RESULT(MDOaddconstr(model, 4, row1_idx, row1_val, MDO_GREATER_EQUAL, 1.0, "c0"));
117    CHECK_RESULT(MDOaddconstr(model, 3, row2_idx, row2_val, MDO_EQUAL,         1.0, "c1"));
118
119    
120    /*------------------------------------------------------------------*/
121    /* Step 3. Solve the problem and populate optimization result.                */
122    /*------------------------------------------------------------------*/
123    /* Solve the problem. */
124    CHECK_RESULT(MDOoptimize(model));
125    
126        
127    CHECK_RESULT(MDOgetintattr(model, STATUS, &status));
128    if (status == MDO_OPTIMAL) 
129    {
130        CHECK_RESULT(MDOgetdblattr(model, OBJ_VAL, &obj));
131        printf("The optimal objective value is: %f\n", obj);
132        for (int i = 0; i < 4; ++i) 
133        {
134            CHECK_RESULT(MDOgetdblattrelement(model, X, i, &x));
135            printf("x[%d] = %f\n", i, x);
136        }
137    } 
138    else 
139    {
140        printf("No feasible solution.\n");
141    }
142 
143    /*------------------------------------------------------------------*/
144    /* Step 4. Free the model.                                          */
145    /*------------------------------------------------------------------*/
146    RELEASE_MEMORY;
147       
148    return 0;
149}