5.3.5. Python 的QP建模与优化¶
在本节中,我们将使用 MindOpt Python API,以按行输入的形式来建模以及求解 二次规划问题示例 中的问题。
首先,引入 Python 包:
25from mindoptpy import *
并创建优化模型,并赋予一个名称:
30 # Step 1. Create model.
31 model = Model("QP_01")
调用 Model.addVar()
来添加四个优化变量,定义其下界、上界、名称和类型(有关函数的详细使用方式,请参考 Python API):
36 # Add variables.
37 x = []
38 x.append(model.addVar(0.0, 10.0, 0.0, 'C', "x0"))
39 x.append(model.addVar(0.0, float('inf'), 0.0, 'C', "x1"))
40 x.append(model.addVar(0.0, float('inf'), 0.0, 'C', "x2"))
41 x.append(model.addVar(0.0, float('inf'), 0.0, 'C', "x3"))
接着,我们开始添加线性约束:
43 # Add constraints.
44 # Note that the nonzero elements are inputted in a row-wise order here.
45 model.addConstr(1.0 * x[0] + 1.0 * x[1] + 2.0 * x[2] + 3.0 * x[3] >= 1, "c0")
46 model.addConstr(1.0 * x[0] - 1.0 * x[2] + 6.0 * x[3] == 1, "c1")
然后,我们来设置目标函数。首先使用类 QuadExpr
创建一个二次表达式,然后有两种方式来构建:
第一种是利用 QuadExpr
中的方法 QuadExpr.addTerms()
分别输入线性部分和二次部分;
第二种是直接输入一个二次表达式。
最后再用 Model.setObjective()
来设置目标函数并将问题设置为 最小化。
47 # Add objective: 1 x0 + 1 x1 + 1 x2 + 1 x3 + 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1]
48 obj = QuadExpr()
49
50 #option-I
51 obj.addTerms([1.0, 1.0, 1.0, 1.0], [x[0], x[1], x[2], x[3]])
52 obj.addTerms([0.5, 0.5, 0.5, 0.5, 0.5], [x[0], x[1], x[2], x[3], x[0]], [x[0], x[1], x[2], x[3], x[1]])
53
54 #option II
55 # obj = 1*x[0] + 1*x[1] + 1*x[2] + 1*x[3] + 0.5 * x[0]*x[0] + 0.5 * x[1]*x[1] + 0.5 * x[2]*x[2] + 0.5 * x[3]*x[3] + 0.5*x[0]*x[1]
56
57 # Set objective and change to minimization problem.
58 model.setObjective(obj, MDO.MINIMIZE)
问题输入完成后,再调用 Model.optimize()
求解优化问题:
62 model.optimize()
然后,通过属性 Status 和属性 ObjVal 来查看优化结果和最优目标值,并通过属性 X 来查看变量的取值。 其他的属性值请查看 属性 章节。
64 if model.status == MDO.OPTIMAL:
65 print(f"Optimal objective value is: {model.objval}")
66 print("Decision variables:")
67 for v in x:
68 print(f"x[{v.VarName}] = {v.X}")
69 else:
70 print("No feasible solution.")
最后,我们调用 Model.dispose()
来释放模型:
80 model.dispose()
示例 mdo_qo_ex1.py 提供了完整源代码:
1"""
2/**
3 * Description
4 * -----------
5 *
6 * Quadratuc optimization (row-wise input).
7 *
8 * Formulation
9 * -----------
10 *
11 * Minimize
12 * obj: 1 x0 + 1 x1 + 1 x2 + 1 x3
13 * + 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1]
14 * Subject To
15 * c1 : 1 x0 + 1 x1 + 2 x2 + 3 x3 >= 1
16 * c2 : 1 x0 - 1 x2 + 6 x3 = 1
17 * Bounds
18 * 0 <= x0 <= 10
19 * 0 <= x1
20 * 0 <= x2
21 * 0 <= x3
22 * End
23 */
24"""
25from mindoptpy import *
26
27
28if __name__ == "__main__":
29
30 # Step 1. Create model.
31 model = Model("QP_01")
32
33 try:
34 # Step 2. Input model.
35
36 # Add variables.
37 x = []
38 x.append(model.addVar(0.0, 10.0, 0.0, 'C', "x0"))
39 x.append(model.addVar(0.0, float('inf'), 0.0, 'C', "x1"))
40 x.append(model.addVar(0.0, float('inf'), 0.0, 'C', "x2"))
41 x.append(model.addVar(0.0, float('inf'), 0.0, 'C', "x3"))
42
43 # Add constraints.
44 # Note that the nonzero elements are inputted in a row-wise order here.
45 model.addConstr(1.0 * x[0] + 1.0 * x[1] + 2.0 * x[2] + 3.0 * x[3] >= 1, "c0")
46 model.addConstr(1.0 * x[0] - 1.0 * x[2] + 6.0 * x[3] == 1, "c1")
47
48 # Add objective: 1 x0 + 1 x1 + 1 x2 + 1 x3 + 1/2 [ x0^2 + x1^2 + x2^2 + x3^2 + x0 x1]
49 obj = QuadExpr()
50
51 #option-I
52 obj.addTerms([1.0, 1.0, 1.0, 1.0], [x[0], x[1], x[2], x[3]])
53 obj.addTerms([0.5, 0.5, 0.5, 0.5, 0.5], [x[0], x[1], x[2], x[3], x[0]], [x[0], x[1], x[2], x[3], x[1]])
54
55 #option II
56 # obj = 1*x[0] + 1*x[1] + 1*x[2] + 1*x[3] + 0.5 * x[0]*x[0] + 0.5 * x[1]*x[1] + 0.5 * x[2]*x[2] + 0.5 * x[3]*x[3] + 0.5*x[0]*x[1]
57
58 # Set objective and change to minimization problem.
59 model.setObjective(obj, MDO.MINIMIZE)
60
61 # Step 3. Solve the problem and populate optimization result.
62 model.optimize()
63
64 if model.status == MDO.OPTIMAL:
65 print(f"Optimal objective value is: {model.objval}")
66 print("Decision variables:")
67 for v in x:
68 print(f"x[{v.VarName}] = {v.X}")
69 else:
70 print("No feasible solution.")
71 except MindoptError as e:
72 print("Received Mindopt exception.")
73 print(" - Code : {}".format(e.errno))
74 print(" - Reason : {}".format(e.message))
75 except Exception as e:
76 print("Received other exception.")
77 print(" - Reason : {}".format(e))
78 finally:
79 # Step 4. Free the model.
80 model.dispose()